Transition Metal Sulfide Electrocatalysts for PEM Fuel Cells

Hua Zhang¹, Ysmael Verde-Gómez¹ and Allan J. Jacobson¹
Alejandra Ramirez² and Russell R. Chianelli²

¹Department of Chemistry, University of Houston

Houston, TX 77204

²Materials Research and Technology Institute, University of Texas at El Paso, El Paso, TX 79968

帅

Objectives

- Investigate non-platinum electro-catalysts with CO tolerance
- > Focus on transition metal sulfides as electro-catalysts
- Known catalysts for hydrogen dissociation
- Single phases or promoted systems e.g. Ni/MoS₂
- Started with RuS₂ probably the best hydrogen dissociation catalyst
- Previous work on oxygen reduction using RuS_x electrocatalysts

Synthesis of RuS_x Electrocatalysts

Unsupported RuS_x:

RuS_x supported on carbon (impregnation method):

Characterization of RuS_x

Samples	Synthesis	SEM/EDX S:Ru	TGA RuS _x %	SSA m²/g
RuS ₂ (UTEP)	400°C /2h/H ₂ /H ₂ S	2.07(TGA)		59.7
RuS ₂ /C-1A	RT/48h 400°C/He/1h 400°C/H ₂ S/2h	2.5	18.2	190.2
RuS ₂ /C-2A	RT/48h 400°C/He/1h 400°C/H ₂ S/2h	2.59	33.9	176.6
RuS ₂ /C-2B1	Boiling/2h,RT/46h, RT/He/0.5h, 400°C/H ₂ S/2h	2.41	33.6	149.3

^{*} SSA of Vulcan XC72R=234.90m²/g

Characterization of RuS_x

X-ray diffraction patterns of RuS_x and RuS_x/C

RuS_x dispersion on carbon (TEM image) sample: RuS_x/C-1A

Electrochemical Measurements

Three Electrode Cell

Electrode Preparation

The three-layer electrodes were prepared by spraying

Carbon paper (Toray, TGPH-090, E-TEK) with a diffusion layer was dried at 80°C for 1 h.

Catalyst ink formed from ruthenium sulfide, carbon powder (Vulcan XC-72R, Cabot), Nafion solution (5 wt.%, Aldrich) and glycerol/ethanol

The suspension was stirred - ultrasonic bath for 30 min.

The ink was airbrushed onto the weighed composite substrate and dried for 30 min at 80 °C

The catalyst loading was determined from the final electrode weight.

Effect of CO on RuS₂ Catalysts

Polarization curves for H₂ oxidation on RuS₂ and Pt electrodes in 0.1M H₂SO₄ with 100 ppm CO-H₂. RuS₂ loading: 0.72 mg/cm²

Single cell performance at different temperatures

(0.34 mg/cm² Pt loading for anode and cathode)

Single Cell –RuS₂ Anode

Conclusions

- RuS₂ is an active electrocatalyst for hydrogen oxidation
 - $-\sim 100 \text{ mW/cm}^2$ at ambient temperature
- Low activity catalysts show CO tolerance
- Origin of the activation behavior and CO tolerance of the activated catalyst not yet known